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Abstract. In this project, we present the notion of a pointwise bi-slant Riemannian submersion in the

almost product context, generalizing the ideas of slant, pointwise slant, anti-invariant, semi-slant, pointwise
semi-slant, and bi-slant submersions. Necessary and sufficient conditions for the integrability and total

geodesicity of certain distributions of the fibers of a pointwise bi-slant submersion are given. Moreover, we
provide many relations between pluriharmonicity, ϕ-invariance, integrability, and total geodesicity for such

submersions.

1. Introduction

The theory of submanifolds has been shown to be quite useful in Differential Geometry. It:

• generalizes the concept of curves and surfaces to higher dimensions,
• enables the study of complex geometries that Euclidean spaces cannot fully capture,
• provides a framework to analyze the intrinsic properties of curvature, tangent spaces, geodesics, and
other geometric structures,

• allows for the representation of complex shapes and motion paths in an efficient, compact manner
in robotics and computer graphics,

• develops powerful tools for shape matching, registration, and analysis by representing shapes as
submanifolds in shape analysis,

• helps solve differential equations in various applications, such as fluid dynamics, heat conduction,
and elasticity,

• aids in representing configuration spaces of physical systems,
• aids in understanding the underlying structure of high-dimensional data in terms of data visualiza-
tion, dimensionality reduction, and clustering.

Overall, submanifolds provide a powerful and flexible framework for understanding complex geometries and
their intrinsic properties. They offer a deeper insight into the structure of spaces, and crucially, they find
applications across a wide range of disciplines, making them an essential concept in modern mathematics
and its various applications.

The importance of submanifolds prompted the Geometers to define and study specific submanifolds. One
of the ways to obtain a submanifold is by working with submersions. The most well-known and studied map
of this kind is the Riemannian Submersion. The notion of Riemannian submersion was introduced first by
O’Neill with the following definition.

Definition 1.1. [9] Let (M1, g1) and (M2, g2) be Riemannian manifolds, where dim(M1) is greater than
dim(M2). A surjective mapping

Ψ : (M1, g1) → (M2, g2)

is called a Riemannian submersion if

(S1) Ψ has maximal rank, and

(S2) Ψ∗, restricted to kerΨ⊥
∗ , is a linear isometry.

In this case, for each q ∈ M2, Ψ−1(q) is a k-dimensional submanifold of M1, called a fiber, where
k = dim(M1)− dim(M2).
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Later, Watson considered Riemannian submersions between almost Hermitian manifolds and called them
almost Hermitian submersions [23], where the submersion is now a complex mapping. Another submersion,
called an anti-invariant Riemannian submersion, was defined also in a complex context by Şahin [12]: in this
case, the fibers are horizontal under the action of the almost complex structure, i.e. they are anti-invariant
submanifolds of the total space. Outside of these specific cases, the notion of a Riemannian submersion has
been considered in many other contexts, such as contact [32], complex [5], almost product [33], and more. In
all of these studies, submersions were defined based on the action of the structure of the manifold on the fibers.

Crucially for this report, another type of submersion called a bi-slant Riemannian submersion was given
in a complex context with the following definition.

Definition 1.2. [26] Let (M, g, J) be a Kaehler manifold and (N, gN ) be a Riemannian manifold. A
Riemannian submersion π : (M, g, J) → (N, gN ) is called a bi-slant submersion if there are two slant
distributions Dθ1 ⊂ kerπ∗ and Dθ2 ⊂ kerπ∗ such that

(1.1) kerπ∗ = Dθ1 ⊕Dθ2 ,

where Dθ1 and Dθ2 have slant angles θ1 and θ2, respectively. If each slant angle is neither zero nor π
2 , then

the bi-slant submersion is called a proper bi-slant submersion.

The angles θ1 and θ2 are constants in this definition. Generalizing, Sepet et al. considered the angles as
functions and defined a pointwise bi-slant Riemannian submersion in a complex context [18] and a contact
context [19]. However, since the structure of the manifold plays a role in defining a submersion, a natural
question is:

What if we consider a pointwise bi-slant Riemannian submersion in an almost product context?

This is the very question this report considers. First, we present preliminary information to understand the
coming results, including formally defining an almost product Riemannian manifold and a pointwise bi-slant
Riemannian submersion, as well as presenting an example of a pointwise bi-slant Riemannian submersion in
an almost product context.

2. Preliminaries

2.1. Riemannian submersions. When considering a Riemannian submersion π : (M, g) → (N, ḡ), we
recall the following observations and concepts:

• A vector field on M is called vertical (resp. horizontal) if it is always tangent (resp. orthogonal) to
fibers.

• We will denote by V and H the projections on the vertical distribution kerπ∗ and the horizontal
distribution kerπ⊥

∗ , respectively.
• The manifold (M, g) is called the total manifold and (N, ḡ) is called the base manifold.
• A vector field X on M is called basic if X is horizontal and π-related to a vector field X∗ on N, i.e.,

π∗Xp = X∗π(p), ∀p ∈ M.

The last fact given above yields the following lemma [9], which explains the preservation of brackets, inner
products, and covariant derivatives.

Lemma 2.1. Let π : (M, g) → (N, ḡ) be a Riemannian submersion between Riemannian manifolds. If X
and Y are basic vector fields, then

• g(X,Y ) = ḡ(X∗, Y∗) ◦ π,
• the horizontal part H[X,Y ] of [X,Y ] is a basic vector field corresponding to [X∗, Y∗],
• the horizontal part H(∇M

X Y ) of ∇M
X Y is the basic vector field corresponding to ∇N

X∗
Y∗,

• [U,X] is vertical for any vector field U of kerπ∗.

2.2. O’Neill’s tensors. The geometry of Riemannian submersions is characterized by O’Neill’s tensors T
and A, defined as follows:

(2.1) TEG = V∇VEHG+H∇VEVG,

(2.2) AEG = V∇HEHG+H∇HEVG,
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where E and G are vector fields of M and ∇ is the Levi-Civita connection of g. It is clear T and A reverse
the vertical and horizontal distributions, respectively. We also see that TE and AE are skew-symmetric
operators on the tangent bundle of M , meaning for all E,F,G ∈ Γ(TM),

g(F, TEG) = −g(TEF,G),

g(F,AEG) = −g(AEF,G).

Moreover, let V,W be vertical and X,Y be horizontal vector fields on M . Then we have

(2.3) TV W = TWV,

(2.4) AXY = −AY X =
1

2
V[X,Y ].

On the other hand, from (2.1) and (2.2), we obtain

(2.5) ∇V W = TV W + ∇̂V W,

(2.6) ∇V X = TV X +H∇V X,

(2.7) ∇XV = AXV + V∇XV,

(2.8) ∇XY = H∇XY +AXY,

where ∇̂V W ≡ V∇V W . Lastly, if X is basic,

(2.9) H∇V X = AXV.

For more details, we refer to O’Neill’s paper [9] and the book [5].
Remark: in this paper, we will assume all horizontal vector fields are basic. ♢

2.3. Almost product Riemannian and locally product Riemannian manifolds. An m-dimensional
manifold M is called an almost product manifold if it is equipped with an almost product structure ϕ, which
is a tensor field of type (1,1), satisfying

(2.10) ϕ2 = id (ϕ ̸= ±id).

We denote an almost product manifold by (M,ϕ). Moreover, if (M,ϕ) admits a Riemannian metric g
satisfying

(2.11) g(ϕE, ϕG) = g(E,G) for each E,G ∈ Γ(TM),

then M is said to be an almost product Riemannian manifold.
Now, let ∇ be the Riemannian connection with respect to the metric g on M . Then M is called a locally
product Riemannian manifold (briefly, l.p.R.) if ϕ is parallel with respect to the connection, i.e. [25]

∇ϕ = 0.(2.12)

3. Pointwise bi-slant submersions

With the relevant background covered, we are now able to define a pointwise bi-slant submersion in an
almost product context. This submersion sets itself apart from the previously-defined bi-slant submersion
(see [26]) since slant angles are not constant here but rather functions over the total manifold. The pointwise
bi-slant submersion can therefore be seen as a generalization of the bi-slant submersion.

Definition 3.1. Let (M, g, ϕ) be an almost product Riemannian manifold and (N, ḡ) be a Riemannian
manifold. A Riemannian submersion π : (M, g, ϕ) → (N, ḡ) is called a pointwise bi-slant Riemannian
submersion if the vertical distribution kerπ∗ decomposes into two orthogonal complementary distributions
Dθ1 and Dθ2 :

(3.1) kerπ∗ = Dθ1 ⊕Dθ2 .

In this case, Dθi for i ∈ {1, 2} is a pointwise slant distribution where the angle θi between ϕU and the space
(Dθi)q (for all q ∈ M) is independent of the choice of nonzero vector U ∈ Γ(Dθi)q. We call θ1 and θ2 the
slant functions of the pointwise bi-slant Riemannian submersion.
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Example. Consider the standard Euclidean space R8 with the standard metric g. One can see that

ϕ1(x1, x2, ..., x8) = (−x3, x4,−x1, x2,−x7, x8,−x5, x6)

and
ϕ2(x1, x2, ..., x8) = (x2, x1, x4, x3, x6, x5, x8, x7)

are almost product Riemannian structures on R8, where ϕ1ϕ2 = −ϕ2ϕ1. For any smooth function π : R8 →
R4, we can define a new almost product Riemannian structure given by

ϕ1,2 = fϕ1 + hϕ2,

where f and h are defined by

f : R8 − {−1} → R,

f(x1, x2, ..., x8) = − x1√
(x1)2 + 1

,

h : R8 → R,

h(x1, x2, ..., x8) =
1√

(x1)2 + 1
.

It is easy to check that (R8, ϕ1,2, g) is an almost product Riemannian manifold.
Now, let π be a map between R8 and R4 defined by

π(x1, x2, ..., x8) =

(
x1 − x3√

2
,
x2 − x4√

2
,
x5 + x8√

2
,
−x6 + x7√

2

)
.

Then the decomposition kerπ∗ = Dθ1 ⊕Dθ2 where

Dθ1 = span

{
∂

∂x1
+

∂

∂x3
,

∂

∂x2
+

∂

∂x4

}
,

Dθ2 = span

{
∂

∂x5
− ∂

∂x8
,

∂

∂x6
+

∂

∂x7

}
shows that π is a pointwise bi-slant submersion with slant functions

θ1 = cos−1(g) and θ2 = cos−1(−f).

(These slant functions can be found by direct calculation.) ♢

Further analyzing the almost product structure ϕ, it is known that we may find ways to decompose the
vector fields ϕX and ϕξ, where X ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ∗

⊥), into horizontal and vertical components.
These decompositions are not unique, and they are in general different for horizontal and vertical fields.
Thus, we notate them generally in the following definition.

Definition 3.2. Let π : (M, g, ϕ) → (N, ḡ) be a pointwise bi-slant submersion from an almost product
Riemannian manifold M onto a Riemannian manifold N . Then, for any V ∈ Γ(kerπ∗), we may decompose
ϕ(V ) as

(3.2) ϕ(V ) = tV + nV,

where tV ∈ Γ(kerπ∗) and nV ∈ Γ(kerπ∗
⊥). Similarly, for any ξ ∈ Γ(kerπ∗

⊥),

(3.3) ϕξ = T ξ +Nξ,

where T ξ ∈ Γ(kerπ∗) and Nξ ∈ Γ(kerπ∗
⊥).

With these canonical forms now written, we may find immediate corollaries that will be used often in the
coming theorems.

Corollary 3.3. Let π : (M,ϕ, g) → (N, ḡ) be a pointwise bi-slant Riemannian submersion from almost
product Riemannian manifold M onto Riemannian manifold N . Then, for any X,Y ∈ Γ(kerπ∗) and any
β, ξ ∈ Γ(kerπ∗

⊥),

I) g(tX, Y ) = g(X, tY ),

II) g(Nβ, ξ) = g(β,Nξ).
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Corollary 3.4. Let π : (M, g, ϕ) → (N, ḡ) be a pointwise bi-slant submersion from almost product Riemann-
ian manifold M onto Riemannian manifold N . Then, for any X ∈ Γ(kerπ∗) and any ξ ∈ Γ(kerπ∗

⊥),

I) i) X = t2X + T nX,

ii) 0 = NnX + ntX,

II) i) ξ = N2ξ + nT ξ,

ii) 0 = tT ξ + T Nξ.

Proof. Let X ∈ kerπ∗. Then:

X = ϕ2X

= ϕ(tX + nX)

= t2X + ntX + T nX +NnX

⇒ 0 = (−X + t2X + T nX) + (NnX + ntX).

We have divided the above sum into horizontal and vertical parts. Since both parts sum to 0, both must
individually be 0, yielding item I(i) and item I(ii). The other two may be found in a similar manner. □

Corollary 3.5. Let π : (M, g, ϕ) → (N, ḡ) be a pointwise bi-slant Riemannian submersion from locally
product Riemannian manifold M to Riemannian manifold N where ∇ is the Levi-Civita connection of g.
Then, for any X,Y ∈ Γ(kerπ∗) and any β, ξ ∈ Γ(kerπ∗

⊥),

I) i) ∇̂XtY + TX(nY ) = T TX(Y ) + t∇̂XY

ii) TX(tY ) +AnY (X) = NTX(Y ) + n∇̂XY,

II) i) ∇̂βT ξ +Aβ(Nξ) = T H∇βξ + tAβ(ξ)

ii) Aβ(T ξ) +H∇βNξ = N H∇βξ + nAβ(ξ),

III) i) ∇̂βtX +Aβ(nX) = T Aβ(X) + t∇̂βX

ii) Aβ(tX) +H∇βnX = NAβ(X) + n∇̂βX,

IV) i) ∇̂XT ξ + TX(Nξ) = T Aξ(X) + tTX(ξ)

ii) TX(T ξ) +ANξ(X) = NAξ(X) + nTX(ξ).

Proof. Let X,Y ∈ Γ(kerπ∗). Because ϕ is parallel to the connection ∇, we know ∇XϕY = ϕ∇XY . Then
we may use eq. (2.5) and eq. (2.6) to show the following:

∇XϕY = ϕ∇XY

∇XtY +∇XnY = ϕ(TX(Y ) + ∇̂XY )

TX(tY ) + ∇̂XtY + TX(nY ) +H∇XnY = T TX(Y ) +NTX(Y ) + t∇̂XY + n∇̂XY.

Each vector field in the final equation is either horizontal or vertical. Thus, we may rewrite this equation
into a sum of vertical vector fields plus a sum of horizontal vector fields. These sums add to 0, and so
the horizontal and vertical parts must both be 0 individually. This immediately yields item I(i) and, upon
substitution of H∇XnY = AnY (X) from eq. (2.9), we find item I(ii). All other equations may be found
using a similar method. □

It is known in the literature that the pointwise slant distributions Dθj (j ∈ {1, 2}) are t-invariant, meaning
for all V ∈ Γ(Dθj ), tV ∈ Γ(Dθj ). Using this fact, the next corollary follows.

Corollary 3.6. Let π : (M, g, ϕ) → (N, ḡ) be a pointwise bi-slant Riemannian submersion from almost
product Riemannian manifold M onto Riemannian manifold N , and let V ∈ Γ(Dθi) where i ∈ {1, 2} Then,

I) t2V = cos2 (θi)V,
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II) T nV = sin2 (θi)V,

III) g(tV, tV ) = cos2 (θi)g(V, V ),

IV) g(nV, nV ) = sin2 (θi)g(V, V ).

Proof. Without loss of generality, let V ∈ Γ(Dθ1).

I) Since tV ∈ Γ(Dθ1), we get that

cos θ1 =
g(ϕV, tV )

||V || ||tV ||

=
g(tV, tV )

||V || ||tV ||

=
||tV ||
||V ||

.

But then, because g(ϕV, tV ) = g(V, ϕtV ), we also have that

cos θ1 =
g(V, ϕtV )

||V || ||tV ||

=
g(V, t2V + ntV )

||V || ||tV ||

=
g(V, t2V )

||V || ||tV ||
.

Which, in turn, implies:

cos2(θ1) =
g(V, t2V )

||V ||2
=⇒ g(V, V ) cos2 θ1 = g(V, t2V )

=⇒ t2V = cos2 (θ1)V.

II) Using item I(i) from corollary 3.4, the result follows immediately.

III) Using item I) from corollary 3.3 and result I from this lemma, the result follows.

IV) Notice that:

g(V, V ) = g(ϕV, ϕV )

= g(tV, tV ) + g(nV, nV )

= cos2 θ1g(V, V ) + g(nV, nV ),

⇒ g(nV, nV ) = sin2 (θ1)g(V, V ).

□
We may also draw more conclusions on the behavior of the canonical forms t, n,T , and N using their

derivatives. They are given below, and the coming theorem relates the parallel conditions of these derivatives.

Definition 3.7. Let π be a Riemannian submersion from a locally product Riemannian manifold (M,ϕ, g)
to a Riemannian manifold (N, ḡ). Then the derivatives of t, n,T , and N are given by the following: for all
U, V ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ∗

⊥),

(∇U t)V = ∇̂U tV − t∇̂UV,

(∇Un)V = H∇UnV − n∇̂UV,

(∇UT )ξ = ∇̂UT ξ − T H∇Uξ,

(∇UN)ξ = H∇UNξ −N H∇Uξ.

Using eq. (2.9) and corollary 3.5, we may rewrite these derivatives in other forms. These are given below:
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(∇U t)V = ∇̂U tV − t∇̂UV = T TU (V )− TU (nV ),(3.4)

(∇Un)V = AnV (U)− n∇̂UV = NTU (V )− TU (tV ),(3.5)

(∇UT )ξ = ∇̂UT ξ − T Aξ(U) = tTU (ξ)− TU (Nξ),(3.6)

(∇UN)ξ = ANξ(U)−NAξ(U) = nTU (ξ)− TU (T ξ).(3.7)

Theorem 3.8. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M,ϕ, g) onto a Riemannian manifold (N, ḡ). Then ∇n = 0 if and only if ∇T = 0.

Proof. Let U, V ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ∗
⊥). Then we know the following is true:

g(V, tTU (ξ)) = g(tV, TU (ξ)) = −g(TU (tV ), ξ).

If we let ∇n = 0, then we know from eq. (3.5) that TU (tV ) = NTU (V ). Therefore,

g(V, tTU (ξ)) = −g(NTU (V ), ξ) = −g(TU (V ), Nξ) = g(V, TU (Nξ)),

=⇒ g(V, tTU (ξ)− TU (Nξ)) = 0.

This implies tTU (ξ) − TU (Nξ) = 0 for all vertical U and horizontal ξ; therefore, eq. (3.6) implies ∇T = 0.
We can then employ a similar method to prove ∇T = 0 =⇒ ∇n = 0. First, we know

g(ξ,NTU (V )) = g(Nξ, TU (V )) = −g(TU (Nξ), V ).

Then, assuming ∇T = 0, we know TU (Nξ) = tTU (ξ) by eq. (3.6). Therefore,

g(ξ,NTU (V )) = −g(tTU (ξ), V ) = −g(TU (ξ), tV ) = g(ξ, TU (tV ))

=⇒ g(ξ,NTU (V )− TU (tV )) = 0.

This implies NTU (V )− TU (tV ) = 0 for each U, V ∈ Γ(kerπ∗), meaning ∇n = 0.
□

4. Integrability

Using these identities with the canonical structures, we may now discuss properties of the distributions
yielded from pointwise bi-slant Riemannian submersions. The first condition of interest is integrability: a
distribution of a manifold is integrable if, for any point on the manifold, there exists a submanifold containing
the point such that the tangent space at the point is equal to the distribution at the point. Amazingly,
Ferdinand Georg Frobenius was able to show that a distribution D of a smooth manifold is integrable if and
only if for any X,Y ∈ Γ(D), [X,Y ] ∈ Γ(D). For our specific work, we derive some equivalent conditions for
the integrability of the distributions Dθ1 and Dθ2 . To do this, we first define the second fundamental form
of a smooth map between manifolds.

Definition 4.1. Let π be a C∞ map between a Riemannian manifold (M, g) and a Riemannian manifold
(N, ḡ). The second fundamental form of π is then given by

(4.1) (∇π∗)(X,Y ) = ∇π
Xπ∗Y − π∗(∇XY ),

where ∇π is the pullback connection and we, conveniently, denote ∇ as the Levi-Civita connections of g and
ḡ. [27]

We want to incorporate the metric g into our equivalent conditions for the integrability of the slant
distributions. Thus, to give these conditions, we need the following result.

Theorem 4.2. Let π : (M, g, ϕ) → (N, ḡ) be a pointwise bi-slant Riemannian submersion from a locally
product Riemannian manifold M to a Riemannian manifold N where kerπ∗ = Dθ1 ⊕Dθ2 , and let i, j ∈ {1, 2}
with i ̸= j. Then, for any X,Y ∈ Γ(Dθi) and U ∈ Γ(Dθj ),

I) g(∇XY, U) = − csc2 θj

[
g(X, TY (ntU) + TtY (nU) +AnY (nU))

]
II) g(∇XY, U) = sec2 θj

[
g(∇̂XtY, tU) + g(X, TtU (nY ) + TY (ntU))

]
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Proof. Let X,Y ∈ Γ(Dθi) and U ∈ Γ(Dθj ). Then,

g(∇XY, U) = g(ϕ∇XY, ϕU) = g(ϕ∇XY, tU) + g(ϕ∇XY, nU)

= g(ϕ2∇XY, ϕtU) + g(ϕ∇XY, nU)

= g(∇XY, t2U) + g(∇XY, ntU) + g(ϕ∇XY, nU).

Using corollary 3.6, t2U = cos2 θjU . Thus:

(4.2) sin2 (θj)g(∇XY,U) = g(∇XY, ntU) + g(ϕ∇XY, nU).

We now manipulate the term g(ϕ∇XY, nU) using the parallel condition for ϕ, the skew-symmetric properties
of T and A, equations 2.5 and 2.6, and the assumption that nY is basic:

g(ϕ∇XY, nU) = g(∇X(ϕY ), nU)

= g(∇X(tY ), nU) + g(∇X(nY ), nU)

= g(TX(tY ) + ∇̂XtY, nU) + g(H∇XnY + TX(nY ), nU)

= g(TX(tY ), nU) + g(H∇XnY , nU)

= g(TtY (X), nU) + g(AnY (X), nU)

= −g(X, TtY (nU) +AnY (nU))

We may now plug in this result for g(ϕ∇XY, nU) into eq. (4.2), and then use the same properties and lemmas
as used previously to derive the following:

sin2 (θj)g(∇XY, U) = g(∇XY, ntU)− g(X, TtY (nU) +AnY (nU))

= g(TY (X), ntU)− g(X, TtY (nU) +AnY (nU))

= −g(X, TY (ntU) + TtY (nU) +AnY (nU)).

This implies the first result.
To find the second result, we use the same relation:

g(∇XY,U) = g(ϕ∇XY, tU) + g(ϕ∇XY, nU)

= g(ϕ∇XY, tU) + g(ϕ2∇XY, ϕnU)

= g(ϕ∇XY, tU) + g(∇XY,T nU) + g(∇XY,NnU).

Using item I(i) in corollary 3.4, we may rewrite the middle term as follows:

g(∇XY,U) = g(ϕ∇XY, tU) + g(∇XY,U − t2U) + g(∇XY,NnU)

= g(ϕ∇XY, tU) + g(∇XY,U)− cos2 (θj)g(∇XY,U) + g(∇XY,NnU)

=⇒ cos2 (θj)g(∇XY,U) = g(ϕ∇XY, tU) + g(∇XY,NnU)

Using the parallel condition, the corollaries for the canonical forms, and similar methods used to find the
first result, we may rewrite the equation above as follows:

cos2(θj)g(∇XY, U) = g(∇XϕY, tU) + g(∇XY,NnU)

= g(∇XtY, tU) + g(∇XnY, tU) + g(∇XY,NnU)

= g(TX(tY ) + ∇̂XtY, tU) + g(H∇XnY + TX(nY ), tU) + g(TX(Y ) + ∇̂XY,NnU)

= g(∇̂XtY, tU) + g(TX(nY ), tU) + g(TX(Y ), NnU)

= g(∇̂XtY, tU)− g(TX(tU), nY ) + g(TY (X), NnU)

= g(∇̂XtY, tU)− g(TtU (X), nY )− g(TY (NnU), X)

= g(∇̂XtY, tU) + g(TtU (nY ), X)− g(TY (NnU), X)

= g(∇̂XtY, tU) + g(TtU (nY )− TY (NnU), X)

= g(∇̂XtY, tU) + g(TtU (nY ) + TY (ntU), X).
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This yields the second result. □
Using this important result, we are now ready to give conditions for the integrability of the slant distri-

butions.

Theorem 4.3. Let π be a pointwise bi-slant Riemannian submersion mapping from an l.p.R manifold
(M,ϕ, g) to a Riemannian manifold (N, ḡ) where kerπ∗ = Dθ1 ⊕Dθ2 . Let i, j ∈ {1, 2} with i ̸= j. Then the
following conditions are equivalent: for all X,Y ∈ Γ(Dθi) and U ∈ Γ(Dθj ),

I) Dθi is integrable,

II) 0 = g(nU, TtX(Y ) +AnX(Y )− (TtY (X) +AnY (X))).

III) 0 = g(tU, ∇̂XtY − ∇̂Y tX) + ḡ(π∗(nY ), (∇π∗)(X, tU))− ḡ(π∗(nX), (∇π∗)(Y, tU))

IV) 0 = ḡ(π∗(nU), (∇π∗)(tX, Y ) + (∇π∗)(nX, Y )− (∇π∗)(tY,X)− (∇π∗)(nY,X))

Proof. Let X,Y ∈ Γ(Dθi) and U ∈ Γ(Dθj ). We may use the Frobenius theorem to show that Dθi is
integrable if and only if g([X,Y ], U) = 0 for all X,Y ∈ Γ(Dθi) and U ∈ Γ(Dθj ). This will be used in proving
the equivalence of the four conditions.

To show (I) ⇐⇒ (II), we take equation 1 from theorem 4.2 to yield the following:

g([X,Y ], U) = g(∇XY, U)− g(∇Y X,U)

= − csc2 θj [g(X, TY (ntU) + TtY (nU) +AnY (nU))

− g(Y, TX(ntU) + TtX(nU) +AnX(nU))]

= − csc2 θj [g(X, TtY (nU) +AnY (nU))− g(Y, TtX(nU) +AnX(nU))

+ g(X, TY (ntU))− g(Y, TX(ntU))]

= − csc2 θj [g(X, TtY (nU) +AnY (nU))− g(Y, TtX(nU) +AnX(nU)) + 0]

= csc2 θj [g(TtY (X), nU) + g(AnY (X), nU)− (g(TtX(Y ), nU) + g(AnX(Y ), nU))]

= − csc2(θj)g(nU, TtX(Y ) +AnX(Y )− (TtY (X) +AnY (X))).(4.3)

Equivalence is then clear from the final equation.
To prove (I) ⇐⇒ (III), consider equation 2 of theorem 4.2. Then:

g([X,Y ], U) = sec2 θj [g(∇̂XtY − ∇̂Y tX, tU) + g(X, TtU (nY ) + TY (ntU))

− g(Y, TtU (nX) + TX(ntU))]

= sec2 θj [g(∇̂XtY − ∇̂Y tX, tU)− g(TX(tU), nY )− g(TY (X), ntU)

+ g(TY (tU), nX) + g(TX(Y ), ntU)]

= sec2 θj [g(∇̂XtY − ∇̂Y tX, tU)− g(TX(tU), nY ) + g(TY (tU), nX)].

We know TX(tU) and TY (tU) are horizontal, and therefore we may use the fact that π is an isometry when
restricted on kerπ∗

⊥ to yield the following:

g([X,Y ], U) = sec2 θj [g(tU, ∇̂XtY − ∇̂Y tX)− ḡ(π∗(TX(tU)), π∗(nY ))

+ ḡ(π∗(TY (tU)), π∗(nX))]

= sec2 θj [g(tU, ∇̂XtY − ∇̂Y tX)− ḡ(π∗(∇XtU), π∗(nY ))

+ ḡ(π∗(∇Y tU), π∗(nX))].

Let us then use the definition of the second fundamental form of π to rewrite the push-forwards above:

(∇π∗)(Y, tU) = ∇π
Y π∗tU − π∗(∇Y tU)

= ∇π
Y 0− π∗(∇Y tU)

= −π∗(∇Y tU)

=⇒ π∗(∇Y tU) = −(∇π∗)(Y, tU).
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Similarly, π∗(∇XtU) = −(∇π∗)(X, tU), and thus:

g([X,Y ], U) = sec2 θj [g(tU, ∇̂XtY − ∇̂Y tX) + ḡ((∇π∗)(X, tU), π∗(nY ))

− ḡ((∇π∗)(Y, tU), π∗(nX))].

To show I and IV are equivalent, consult eq. (4.3) and note that all terms in the metric are horizontal.
We may then use the fact that π is an isometry on kerπ∗

⊥ to yield the following:

g([X,Y ], U) = − csc2(θj)ḡ(π∗(nU), π∗(TtX(Y )) + π∗(AnX(Y ))− π∗(TtY (X))− π∗(AnY (X)))

= − csc2(θj)ḡ(π∗(nU), π∗(H∇tXY ) + π∗(H∇nXY )− π∗(H∇tY X)− π∗(H∇nY X))

= − csc2(θj)ḡ(π∗(nU), π∗(∇tXY ) + π∗(∇nXY )− π∗(∇tY X)− π∗(∇nY X)).

In a similar manner as when we proved (I) ⇐⇒ (III), we may rewrite the final equation above using the
second fundamental form of π:

g([X,Y ], U) = csc2(θj)ḡ(π∗(nU), (∇π∗)(tX, Y ) + (∇π∗)(nX, Y )− (∇π∗)(tY,X)− (∇π∗)(nY,X)).

□

5. Totally Geodesic Distributions

We now examine the totally geodesic condition for the integral manifolds of the distributions kerπ∗,
kerπ∗

⊥, Dθ1 , and Dθ2 . To define both integral manifolds and total geodesicity more clearly, we define an
integral manifold of a distribution as a family of integral curves of all vector fields of that distribution. We
also say a submanifold Ms of a Riemannian manifold (M, g) is totally geodesic if any geodesic on Ms using the
Riemannian metric g restricted on the submanifold is also a geodesic on M . When describing this condition,
we will use language like: ‘kerπ∗ is totally geodesic,’ meaning that the integral submanifold corresponding to
kerπ∗ is totally geodesic. Equivalently, we may also say that kerπ∗ defines totally geodesic foliations on the
total manifold, and the same language applies for kerπ∗

⊥. For Dθj , the language: ‘Dθj is totally geodesic’
refers to the integral submanifold corresponding to Dθj being totally geodesic to the integral manifold of
kerπ∗.

The first equivalent conditions for the distributions kerπ∗, kerπ∗
⊥,Dθ1 , and Dθ2 to be totally geodesic

are given in the lemma below. These conditions will be used throughout this report.

Lemma 5.1. [26] Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M,ϕ, g) to a Riemannian manifold (N, ḡ) with kerπ∗ = Dθ1 ⊕Dθ2 . Then, we have the following:

I) kerπ∗ is totally geodesic if and only if H∇XY = 0 for each X,Y ∈ Γ(kerπ∗).

II) kerπ∗
⊥ is totally geodesic if and only if ∇̂ZW = 0 for each Z,W ∈ Γ(kerπ∗

⊥).

III) Dθ1 is totally geodesic if and only if ∇̂X1
Y1 ∈ Γ(Dθ1) for each X1, Y1 ∈ Γ(Dθ1).

IV) Dθ2 is totally geodesic if and only if ∇̂X2
Y2 ∈ Γ(Dθ2) for each X2, Y2 ∈ Γ(Dθ2).

From this lemma, two immediate corollaries follow. First, we see it is clear kerπ∗ is integrable if it is
totally geodesic since, by assumption, ∇̂XY = ∇XY for each X,Y ∈ Γ(kerπ∗). Therefore, [X,Y ] ∈ Γ(kerπ∗)
for all vertical X and Y , implying kerπ∗ is integrable. By a similar procedure, kerπ∗

⊥ is integrable if kerπ∗
⊥

is totally geodesic. The first corollary of lemma 5.1 then shows a similar result also holds for the pointwise
slant distributions Dθj :

Corollary 5.2. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M,ϕ, g) to a Riemannian manifold (N, ḡ) with kerπ∗ = Dθ1 ⊕Dθ2 , and let j ∈ {1, 2}. Then Dθj

is integrable if Dθj is totally geodesic.

Proof. Let X,Y ∈ Γ(Dθj ) and assume Dθj is totally geodesic. Since X and Y are vertical, [X,Y ] is vertical,
implying

[X,Y ] = V[X,Y ] = (∇̂XY − ∇̂Y X) ∈ Γ(Dθj ).

□

The second immediate corollary of lemma 5.1 gives conditions for when kerπ∗ and kerπ∗
⊥ are totally

geodesic, as well as other useful relations when the totally geodesic condition is satisfied.
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Corollary 5.3. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M,ϕ, g) to a Riemannian manifold (N, ḡ), and let X,Y ∈ Γ(kerπ∗) and β, ξ ∈ Γ(kerπ∗

⊥). Then,

I) kerπ∗ is totally geodesic
i) iff T = 0 on kerπ∗,

ii) implies TX(nY ) = t∇XY −∇XtY,

iii) implies AnY (X) = n∇XY.

II) kerπ∗
⊥ is totally geodesic

i) iff A = 0 on kerπ∗
⊥,

ii) implies Aβ(T ξ) = N∇βξ −∇βNξ,

iii) implies ∇̂βT ξ = T ∇βξ.

Proof. Let X,Y ∈ Γ(kerπ∗). First, from eq. (2.5) we know that

∇XY = TX(Y ) + ∇̂XY,

and thus we can see that ∇XY = ∇̂XY ⇐⇒ TX(Y ) = 0. This shows item I(i).
Now, quote item I(i) from corollary 3.5:

∇̂XtY + TX(nY ) = T TX(Y ) + t∇̂XY.

Assuming kerπ∗ is totally geodesic, we know TX(Y ) = 0, implying that T TX(Y ) = 0. Using the same rule,

∇̂XtY = ∇XtY and t∇̂XY = t∇XY . Therefore,

TX(nY ) = t∇XY −∇XtY.

This proves item I(ii). For the third relation, we use the following equation from corollary 3.5:

TX(tY ) +AnY (X) = NTX(Y ) + n∇̂XY.

By assumption, we know TX(tY ) = 0 and NTX(Y ) = N(0) = 0. Therefore, after noting that ∇̂XY = ∇XY ,
we know

AnY (X) = n∇XY.

We can prove the other three equations with similar methods using eq. (2.8) and corollary 3.5. □

With these smaller corollaries finished, we may now provide theorems for equivalent conditions for kerπ∗
and kerπ∗

⊥ to be totally geodesic, which will lead to a larger theorem using both.

Theorem 5.4. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M, g, ϕ) to a Riemannian manifold (N, ḡ). Then the following are equivalent: for each X,Y ∈
Γ(kerπ∗),

I) kerπ∗ is totally geodesic,

II) NTX(tY ) + n∇̂XtY + nTX(nY ) +NAnY (X) = 0,

III) ∇XY = T TX(tY ) + t∇̂XtY + tTX(nY ) + T AnY (X),

Proof. Let X,Y ∈ Γ(kerπ∗). Then,

∇XY = ϕ∇XϕY

= ϕ(∇XtY +∇XnY )

= ϕ(TX(tY ) + ∇̂XtY + TX(nY ) +H∇XnY )

= T TX(tY ) +NTX(tY ) + t∇̂XtY + n∇̂XtY

+ tTX(nY ) + nTX(nY ) + T (H∇XnY ) +N(H∇XnY ).

This implies
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∇̂XY = T TX(tY ) + t∇̂XtY + tTX(nY ) + T AnY (X),(5.1)

H∇XY = NTX(tY ) + n∇̂XtY + nTX(nY ) +NAnY (X).

We know kerπ∗ is totally geodesic if and only if H∇XY = 0 by lemma 5.1, and thus NTX(tY )+n∇̂XtY +
nTX(nY )+NAnY (X) = 0 if and only if kerπ∗ is totally geodesic, showing I ⇐⇒ II. To prove I ⇐⇒ III,

we know by lemma 5.1 again that kerπ∗ is totally geodesic if and only if ∇̂XY = ∇XY , and so the first
equation above shows I and III are equivalent. □

Theorem 5.5. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M, g, ϕ) to a Riemannian manifold (N, ḡ). Then the following are equivalent: for all β, ξ ∈
Γ(kerπ∗

⊥),

I) kerπ∗
⊥ is totally geodesic,

II) T Aβ(T ξ) + t∇̂βT ξ + tAβ(Nξ) + T H∇βNξ = 0.

III) ∇βξ = NAβ(T ξ) + n∇̂βT ξ + nAβ(Nξ) +N H∇βNξ

Proof. Let β, ξ ∈ Γ(kerπ∗
⊥). Then,

∇βξ = ϕ∇βϕξ

= ϕ(∇βT ξ +∇βNξ)

= ϕ(Aβ(T ξ) + ∇̂βT ξ +Aβ(Nξ) +H∇βNξ)

= (T Aβ(T ξ) + t∇̂βT ξ + tAβ(Nξ) + T H∇βNξ)

+ (NAβ(T ξ) + n∇̂βT ξ + nAβ(Nξ) +N H∇βNξ).

Therefore:

H∇βξ =NAβ(T ξ) + n∇̂βT ξ + nAβ(Nξ) +N H∇βNξ,

∇̂βξ =T Aβ(T ξ) + t∇̂βT ξ + tAβ(Nξ) + T H∇βNξ.

By lemma 5.1, kerπ∗
⊥ is totally geodesic if and only if ∇̂βξ = 0 for each β, ξ ∈ Γ(kerπ∗

⊥), and thus the
result follows in a similar manner as theorem 5.4. □

We now combine these two theorems. It is known in the literature that, if kerπ∗ and kerπ∗
⊥ define

totally geodesic foliations on M , then M can be written as the product of the integral manifolds of kerπ∗
and kerπ∗

⊥, denoted Mkerπ∗ and Mkerπ∗⊥ respectively. Therefore, the previous results can be used to
provide conditions under which the total manifold M can be written as a product manifold. This idea is
summarized in the following result.

Corollary 5.6. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M,ϕ, g) to a Riemannian manifold (N, ḡ). Then, if at least one of the conditions in theorem 5.4
and at least one in theorem 5.5 are verified for kerπ∗ and kerπ∗

⊥ respectively, then it must be the case that

M = Mkerπ∗ ×Mkerπ∗⊥ .

That is, M can be thought of as a product manifold of the integral manifolds of kerπ∗ and kerπ∗
⊥.

Moving on from the distributions kerπ∗ and kerπ∗
⊥, we develop equivalent conditions for Dθj to be totally

geodesic.

Theorem 5.7. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M,ϕ, g) to a Riemannian manifold (N, ḡ) where kerπ∗ = Dθ1 ⊕ Dθ2 . Then the following are
equivalent: for all X,Y ∈ Γ(Dθj ) and U ∈ Γ(Dθi), where i ̸= j and i, j ∈ {1, 2} :

I) Dθj is totally geodesic,

II) i) 0 = g(X, TY (ntU) + TtY (nU) +AnY (nU)),

ii) 0 = ḡ(π∗(ntU), (∇π∗)(Y,X)) + ḡ(π∗(nU), (∇π∗)(ϕY,X)),
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III) i) 0 = g(∇̂XtY, tU) + g(X, TtU (nY ) + TY (ntU)),

ii) 0 = g(∇̂XtY, tU) + ḡ((∇π∗)(tU,X), π∗(nY )) + ḡ((∇π∗)(Y,X), π∗(ntU)),

IV) 0 = ḡ(π∗(nY ), (∇π∗)(X, tU))− ḡ(π∗(nU), (∇π∗)(X, tY )) + g(ϕU, ∇̂XtY +AnY (X)),

V) 0 = ḡ(π∗(nY ), (∇π∗)(X, tU)) + ḡ(π∗(ϕ∇XY ), π∗(nU)) + g(∇XtY, tU).

VI) T TX(tY ) + t∇̂XtY + tTX(nY ) + T (AnY (X)) has no components in Dθi ⊕ kerπ∗
⊥.

Proof. Let X,Y ∈ Γ(Dθj ) and U ∈ Γ(Dθi). Then, from theorem 4.2,

g(∇XY,U) = − csc2 θi

[
g(X, TY (ntU) + TtY (nU) +AnY (nU))

]
= csc2 θi

[
g(TY (X), ntU) + g(nU, TtY (X) +AnY (X))

]
= csc2 θi

[
ḡ(π∗(TY (X)), π∗(ntU)) + ḡ(π∗(nU), π∗(TtY (X) +AnY (X)))

]
= csc2 θi

[
ḡ(π∗(∇Y X), π∗(ntU)) + ḡ(π∗(nU), π∗(∇ϕY X)

]
= − csc2 θi

[
ḡ((∇π∗)(Y,X), π∗(ntU)) + ḡ(π∗(nU), (∇π∗)(ϕY,X)

]
We know from lemma 5.1 that Dθj is totally geodesic if and only if g(∇XY,U) = 0 for each X,Y ∈ Γ(Dθj )
and U ∈ Γ(Dθi). Therefore, the first and last equations above show that item I), item II(i), and item II(ii)
are equivalent.

To prove the equivalence of item I), item III(i), and item III(ii), we use theorem 4.2 to write the following:

g(∇XY,U) = sec2 θi

[
g(∇̂XtY, tU) + g(X, TtU (nY ) + TY (ntU))

]
= sec2 θi

[
g(∇̂XtY, tU)− g(TtU (X), nY )− g(TY (X), ntU)

]
= sec2 θi

[
g(∇̂XtY, tU)− ḡ(π∗(TtU (X)), π∗(nY ))− ḡ(π∗(TY (X)), π∗(ntU))

]
= sec2 θi

[
g(∇̂XtY, tU)− ḡ(π∗(∇tUX), π∗(nY ))− ḡ(π∗(∇Y X), π∗(ntU))

]
= sec2 θi

[
g(∇̂XtY, tU) + ḡ((∇π∗)(tU,X), π∗(nY )) + ḡ((∇π∗)(Y,X), π∗(ntU))

]
Using lemma 5.1 again, the first and last equations above show the equivalence of item I), item III(i), and
item III(ii).

To prove equivalence of item I) and item IV), we expand g(∇XY, U) in the following manner:

g(∇XY, U) = g(∇XϕY, ϕU)

= g(∇XtY +∇XnY, tU + nU)

= g(TX(tY ) + ∇̂XtY + TX(nY ) +H∇XnY , tU + nU)

= g(∇̂XtY, tU) + g(TX(nY ), tU) + g(TX(tY ), nU) + g(H∇XnY , nU)

= g(∇̂XtY, ϕU)− g(nY, TX(tU)) + g(TX(tY ), nU) + g(H∇XnY , ϕU)

= g(ϕU, ∇̂XtY +H∇XnY )− ḡ(π∗(nY ), π∗(TX(tU))) + ḡ(π∗(nU), π∗(TX(tY )))

= g(ϕU, ∇̂XtY +AnY (X)) + ḡ(π∗(nY ), (∇π∗)(X, tU))− ḡ(π∗(nU), (∇π∗)(X, tY )).

By lemma 5.1, the final equation above demonstrates that item I) and item IV) are equivalent.
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We now employ a similar method to show the equivalency of item I) and item V), this time employing
item I(i) from corollary 3.5:

g(∇XY, U) = g(ϕ∇XY, ϕU)

= g(ϕ(TX(Y ) + ∇̂XY ), tU + nU)

= g(T TX(Y ) +NTX(Y ) + t∇̂XY + n∇̂XY, tU + nU)

= g(T TX(Y ) + t∇̂XY, tU) + g(NTX(Y ) + n∇̂XY, nU)

= g(∇̂XtY + TX(nY ), tU) + g(NTX(Y ) + n∇̂XY, nU)

= g(∇̂XtY, tU)− g(nY, TX(tU)) + g(NTX(Y ) + n∇̂XY, nU)

= g(∇̂XtY, tU)− ḡ(π∗(nY ), π∗(TX(tU))) + ḡ(π∗(NTX(Y ) + n∇̂XY ), π∗(nU))

= g(∇̂XtY, tU) + ḡ(π∗(nY ), (∇π∗)(X, tU)) + ḡ(π∗(ϕ(TX(Y ) + ∇̂XY )), π∗(nU))

= g(∇̂XtY, tU) + ḡ(π∗(nY ), (∇π∗)(X, tU)) + ḡ(π∗(ϕ∇XY ), π∗(nU)).

Using lemma 5.1 again, the result follows.
For the final result, we quote eq. (5.1):

∇̂XY = T TX(tY ) + t∇̂XtY + tTX(nY ) + T (AnY (X)).

Using lemma 5.1 once more, it is clear item I) and item VI) are equivalent. □
Using this theorem above, we may find equivalent conditions to express the integral manifold of kerπ∗

(denoted Mkerπ∗) as a product manifold, in a similar manner to corollary 5.6. This time, though, Mkerπ∗ is
broken down into the integral manifolds of Dθ1 and Dθ2 , denoted MDθ1 and MDθ2 respectively.

Corollary 5.8. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M,ϕ, g) to a Riemannian manifold (N, ḡ). Then, if at least one condition in theorem 5.7 is verified
for both Dθ1 and Dθ2 , it must be the case that

Mkerπ∗ = MDθ1 ×MDθ2 .

That is, Mkerπ∗ can be thought of as a product manifold of the integral manifolds of Dθ1 and Dθ2 .

To finish this section, we incorporate the totally geodesic condition in relating the canonical forms t, n,T ,
and N . As shown before in theorem 3.8, ∇n = 0 if and only if ∇T = 0; from this, it seems natural to try
and find a relationship between the parallel conditions for N and t. Interestingly, these two forms are related
in a similar manner when we incorporate total geodesicity. The following theorem summarizes this result.

Theorem 5.9. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M,ϕ, g) to Riemannian manifold (N, ḡ). If kerπ∗ is totally geodesic, then ∇N = 0 if and only if
∇t = 0.

Proof. Assume kerπ∗ is totally geodesic and let U, V,X ∈ Γ(kerπ∗). Then:

g(X,T TU (V )) = g(X,ϕTU (V )) = g(ϕX, TU (V )) = g(nX, TU (V )) = −g(TU (nX), V ) = −g(ϕTU (nX), ϕV )

= −g(tTU (nX), tV )− g(nTU (nX), nV ).

By assumption that ∇N = 0, we then know nTU (nX) = TU (T nX) by eq. (3.7). Thus, by corollary 3.4

g(X,T TU (V )) = −g(tTU (nX), tV )− g(TU (T nX), nV )

= −g(tTU (nX), tV ) + g(T nX, TU (nV ))

= −g(tTU (nX), tV ) + g(X, TU (nV ))− g(t2X, TU (nV ))

= −g(TU (nX), t2V ) + g(X, TU (nV )) + g(TU (t2X), nV )

= g(TU (t2V ), nX) + g(X, TU (nV )) + g(TU (t2X), nV )

=⇒ g(X,T TU (V )− TU (nV )) = g(TU (t2V ), nX) + g(TU (t2X), nV ).

However, since kerπ∗ is totally geodesic, we know by corollary 5.3 that TU (t2V ) = 0 = TU (t2X), implying
g(X,T TU (V ) − TU (nV )) = 0. Since this equation is true for all X,U, V ∈ Γ(kerπ∗), we know T TU (V ) −
TU (nV ) = 0, meaning ∇t = 0 by eq. (3.4).
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To show the converse, let β ∈ Γ(kerπ∗
⊥). Then:

g(β, nTU (ξ)) = g(β, ϕTU (ξ)) = g(ϕβ, TU (ξ)) = g(T β, TU (ξ)) = −g(TU (T β), ξ) = −g(ϕTU (T β), ϕξ)

= −g(T TU (T β),T ξ)− g(NTU (T β), Nξ).

Assuming ∇t = 0, we know T TU (T β) = TU (nT β) by eq. (3.4). Then by corollary 3.4,

g(β, nTU (ξ)) = −g(TU (nT β),T ξ)− g(NTU (T β), Nξ)

= g(nT β, TU (T ξ))− g(NTU (T β), Nξ)

= g(β, TU (T ξ))− g(N2β, TU (T ξ))− g(NTU (T β), Nξ)

= g(β, TU (T ξ))− g(TU (T ξ), N2β)− g(TU (T β), N2ξ)

=⇒ g(β, nTU (ξ)− TU (T ξ)) = −g(TU (T ξ), N2β)− g(TU (T β), N2ξ).

Due to kerπ∗ being totally geodesic, we see TU (T ξ) = 0 = TU (T β), implying g(β, nTU (ξ)− TU (T ξ)) = 0.
Therefore, using eq. (3.7), we see (∇UN)ξ = nTU (ξ)−TU (T ξ) = 0 for all U ∈ Γ(kerπ∗) and ξ ∈ Γ(kerπ∗

⊥),
implying ∇N = 0. □

6. Pluriharmonicity

We now introduce the pluriharmonic condition for the submersion π. Pluriharmonic morphisms are of
interest because they are a generalization of harmonic morphisms, and these maps are used widely in theo-
retical differential geometry and many applied mathematical fields like Quantum Field Theory, gravitation in
Astrophysics, Geophysics, and more. In this report, we use the pluriharmonic condition to derive equivalent
conditions for integrability and special types of geodesicity for the pointwise slant distributions Dθj , and we
also develop equivalent conditions for pluriharmonicity in special cases. First, we define what it means for
the submersion π to be pluriharmonic, nDθj -geodesic, and totally geodesic (not to be confused with a totally
geodesic distribution, as covered in the previous section), then present relevant results.

Definition 6.1. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M,ϕ, g) to a Riemannian manifold (N, ḡ). Suppose that S is a distribution on M . We say that π
is S − ϕ− pluriharmonic if for each X,Y ∈ Γ(S)

(∇π∗)(X,Y ) + (∇π∗)(ϕX, ϕY ) = 0.

If S is given by the tangent bundle TM , then π is said to be ϕ− pluriharmonic.

Definition 6.2. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M,ϕ, g) to a Riemannian manifold (N, ḡ). We say that π is a totally geodesic map if for each
X,Y ∈ Γ(TM)

(∇π∗)(X,Y ) = 0.

We also say π is an nDθj -geodesic map if, for all W,Z ∈ Γ(Dθj ),

(∇π∗)(nW,nZ) = 0.

From the definition of a pluriharmonic submersion, we have two immediate corollaries.

Corollary 6.3. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M,ϕ, g) to a Riemannian manifold (N, ḡ). If π is ϕ−pluriharmonic, then:

(∇π∗)(ϕX, Y ) = − (∇π∗)(X,ϕY )

Proof. Because π is ϕ−pluriharmonic we have that

(∇π∗)(X,Y ) = − (∇π∗)(ϕX, ϕY )

for each X,Y ∈ Γ(TM). But then it must be the case that:

(∇π∗)(ϕX, Y ) = − (∇π∗)(ϕ
2X,ϕY ) = − (∇π∗)(X,ϕY )

□

Corollary 6.4. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M,ϕ, g) to a Riemannian manifold (N, ḡ). Then for each X,Y ∈ Γ(kerπ∗),

(∇π∗)(X,Y ) = (∇π∗)(Y,X).
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Proof. Let X,Y ∈ Γ(kerπ∗). Then:

(∇π∗)(X,Y )− (∇π∗)(Y,X) = ∇π
Xπ∗(Y )− π∗(∇XY )− (∇π

Y π∗(X)− π∗(∇Y X))

= π∗(∇Y X −∇XY )

= π∗([Y,X]).

Because both X and Y are vertical, we know their Lie bracket is vertical. Therefore, their push forward is
0, and the desired result follows. □

Now that these corollaries are established, we may now present more relevant results using these corollaries.
First, we show equivalent conditions for π being pluriharmonic using two geodesic conditions.

Proposition 6.5. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M,ϕ, g) to a Riemannian manifold (N, ḡ), and assume that kerπ∗ is totally geodesic and that π
is an nDθj -geodesic map, where j ∈ {1, 2}. Then the following are equivalent:

I) π is Dθj − ϕ−pluriharmonic,

II) AnY (tX) +AnX(tY ) = 0 for each X,Y ∈ Γ(Dθj ),

III) n∇tXY +NAnX(Y ) + n∇̂nXY −H∇nXnY = 0 for each X,Y ∈ Γ(Dθj ),

Proof. Let X,Y ∈ Γ(Dθj ). Then:

(∇π∗)(X,Y ) + (∇π∗)(ϕX, ϕY ) = ∇π
Xπ∗(Y )− π∗(∇XY ) +∇π

ϕXπ∗(ϕY )− π∗(∇ϕXϕY )

= −π∗(∇XY ) +∇π
nXπ∗(nY )− π∗(∇ϕXϕY )

= −π∗(TX(Y )) +∇π
nXπ∗(nY )

− π∗(∇tXtY +∇tXnY +∇nXtY +∇nXnY )

= −π∗(TX(Y )) + (∇π∗)(nX, nY )

− π∗(TtX(tY ) +AnY (tX) +AnX(tY )).
(6.1)

Using the condition that kerπ∗ is totally geodesic, we know from corollary 5.3 that π∗(TX(Y )) = π∗(0) = 0
and that π∗(TtX(tY )) = 0. We also know, since π is nDθj− geodesic, that (∇π∗)(nX, nY ) = 0. Then:

(∇π∗)(X,Y ) + (∇π∗)(ϕX, ϕY ) = −π∗(AnY (tX) +AnX(tY )).

Thus, if π is Dθj − ϕ−pluriharmonic, then π∗(AnY (tX) + AnX(tY )) = 0. Since AnY (tX) + AnX(tY ) is
horizontal, then it must be that AnY (tX) + AnX(tY ) = 0. Conversely, if AnY (tX) + AnX(tY ) = 0, then
(∇π∗)(X,Y ) + (∇π∗)(ϕX, ϕY ) = 0, proving item I) is equivalent to item II).

For the other result, we start at a similar point but use the parallel condition on ϕ to write the following:

(∇π∗)(X,Y ) + (∇π∗)(ϕX, ϕY ) = ∇π
Xπ∗(Y )− π∗(∇XY ) +∇π

ϕXπ∗(ϕY )− π∗(∇ϕXϕY )

= −π∗(∇XY ) +∇π
nXπ∗(nY )− π∗(ϕ(∇ϕXY ))

= −π∗(∇XY ) +∇π
nXπ∗(nY )

− π∗(ϕ(TtX(Y ) + ∇̂tXY +AnX(Y ) + ∇̂nXY ))

= −π∗(TX(Y )) +∇π
nXπ∗(nY )

− π∗(NTtX(Y ) + n∇̂tXY +NAnX(Y ) + n∇̂nXY )

Using the condition that kerπ∗ is totally geodesic, we know that π∗(TX(Y )) = 0, NTtX(Y ) = N(0) = 0, and

that ∇̂tXY = ∇tXY . Moreover, since π is nDθj− geodesic, we know ∇π
nXπ∗(nY ) = π∗(∇nXnY ). Therefore,

(∇π∗)(X,Y ) + (∇π∗)(ϕX, ϕY ) = −π∗(n∇tXY +NAnX(Y ) + n∇̂nXY −H∇nXnY ).

The equivalence of item I) and item III) then follows in a similar manner. □

Proposition 6.6. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M,ϕ, g) to a Riemannian manifold (N, ḡ). Let j ∈ {1, 2} and suppose that π is Dθj − ϕ −
pluriharmonic. Then the following are equivalent:

I) π is nDθj -geodesic,
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II) TX(Y ) + TtX(tY ) +AnY (tX) +AnX(tY ) = 0 for all X,Y ∈ Γ(Dθj ).

Proof. Let X,Y ∈ Γ(Dθj ). By assumption, (∇π∗)(X,Y ) + (∇π∗)(ϕX, ϕY ) = 0, and then by eq. (6.1):

0 =− π∗(TX(Y )) + (∇π∗)(nX, nY )− π∗(TtX(tY ) +AnY (tX) +AnX(tY ))

=⇒ (∇π∗)(nX, nY ) =π∗(TtX(tY ) +AnY (tX) +AnX(tY ) + TX(Y )).

Since all terms in the argument of the push-forward of π are horizontal, the result is then clear. □

Finally, we may update the integrability condition given in theorem 4.3 for the pointwise slant distributions
Dθi when our submersion is ϕ−pluriharmonic. Only the changed conditions are listed below, but all others
remain true.

Proposition 6.7. Let π be a pointwise bi-slant Riemannian submersion from locally product Riemannian
manifold (M,ϕ, g) to Riemannian manifold (N, ḡ) where kerπ∗ = Dθ1 ⊕ Dθ2 . Let i, j ∈ {1, 2} where i ̸= j,
and assume π is ϕ−pluriharmonic. Then the following conditions are equivalent:

I) Dθi is integrable,

II) 0 = ḡ(π∗(nU), 2(∇π∗)(Y, ϕX) + (∇π∗)(nX, Y ) − (∇π∗)(Y, nX)) for each X,Y ∈ Γ(Dθi) and U ∈
Γ(Dθj ).

Proof. Let X,Y ∈ Γ(Dθi) and U ∈ Γ(Dθj ). By theorem 4.3, we know Dθi is integrable if and only if
0 = ḡ(π∗(nU), (∇π∗)(tX, Y )+(∇π∗)(nX, Y )− (∇π∗)(tY,X)− (∇π∗)(nY,X)). We may then manipulate the
metric using the pluriharmonicity condition and corollary 6.3:

ḡ(π∗(nU), (∇π∗)(tX, Y ) + (∇π∗)(nX, Y )− (∇π∗)(tY,X)− (∇π∗)(nY,X))

= ḡ(π∗(nU), (∇π∗)(Y, tX)− (∇π∗)(tY,X) + (∇π∗)(nX, Y )− (∇π∗)(nY,X))

= ḡ(π∗(nU), ((∇π∗)(Y, ϕX)− (∇π∗)(Y, nX))− ((∇π∗)(ϕY,X)− (∇π∗)(nY,X))

+ (∇π∗)(nX, Y )− (∇π∗)(nY,X))

= ḡ(π∗(nU), 2(∇π∗)(Y, ϕX) + (∇π∗)(nX, Y )− (∇π∗)(Y, nX))

The result then follows. □

7. ϕ-invariance

For the final section of this report, we discuss ϕ-invariance. This condition seems fairly similar to the
pluriharmonic case, and while its mathematical implementation is quite similar, the application and inter-
pretation is not. As we will see, many results are similar (or even remain the same) when compared to
the pluriharmonic case, but certain simplifications exist in important integrability conditions under this
assumption. Thus, let us define precisely the ϕ-invariant condition, and then provide relevant results.

Definition 7.1. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M,ϕ, g) to a Riemannian manifold (N, ḡ). Suppose that S is a distribution on M . We say that π
is S − ϕ− invariant if for each X,Y ∈ Γ(S)

(∇π∗)(X,Y ) = (∇π∗)(ϕX, ϕY )

If S is given by the tangent bundle TM , then π is said to be ϕ− invariant.

Clearly, if π is ϕ−invariant, then (∇π∗)(ϕX, Y ) = (∇π∗)(X,ϕY ) for any vector fields X and Y . Moreover,
as said before, certain theorems originally related to ϕ−pluriharmonicity remain the same when considering
ϕ−invariance instead. The next proposition is one such case, which has the same results as proposition 6.5.

Proposition 7.2. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M,ϕ, g) to a Riemannian manifold (N, ḡ), and assume that kerπ∗ is totally geodesic and that π
is an nDθj -geodesic map, where j ∈ {1, 2}. Then the following are equivalent:

I) π is Dθj − ϕ−invariant,

II) AnY (tX) +AnX(tY ) = 0 for each X,Y ∈ Γ(Dθj ),
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III) n∇tXY +NAnX(Y ) + n∇̂nXY −H∇nXnY = 0 for each X,Y ∈ Γ(Dθj ),

Proof. This follows in a similar manner to the proof of proposition 6.5. □

While the previous proposition remained invariant in comparison to a corresponding result under pluri-
harmonicity, the next proposition demonstrates that corresponding results by no means have to remain the
same when converting to ϕ−invariance from ϕ−pluriharmonicity.

Proposition 7.3. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M,ϕ, g) to a Riemannian manifold (N, ḡ). Let j ∈ {1, 2} and suppose that π is Dθj −ϕ−invariant.
Then the following are equivalent:

I) π is nDθj− geodesic,

II) TtX(tY )− TX(Y ) +AnY (tX) +AnX(tY ) = 0 for all X,Y ∈ Γ(Dθj ).

Proof. Let X,Y ∈ Γ(Dθj ) and assume π is Dθj − ϕ−invariant. Then, in a similar manner to eq. (6.1), we
know the following is true:

0 = (∇π∗)(X,Y )− (∇π∗)(ϕX, ϕY )

0 = −π∗(TX(Y ))− (∇π∗)(nX, nY ) + π∗(TtX(tY ) +AnY (tX) +AnX(tY ))

=⇒ (∇π∗)(nX, nY ) = π∗(TtX(tY ) +AnY (tX) +AnX(tY )− TX(Y )).(7.1)

Since TtX(tY ) +AnY (tX) +AnX(tY )− TX(Y ) is horizontal, the result follows. □
We also may propose equivalent conditions for kerπ∗ to be totally geodesic under the ϕ−invariant condi-

tion.

Proposition 7.4. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M, g, ϕ) to a Riemannian manifold (N, ḡ). Suppose that π is kerπ∗ − ϕ − invariant. Then the
following are equivalent: for all X,Y ∈ Γ(kerπ∗),

I) kerπ∗ defines totally geodesic foliations on M

II) (∇π∗)(nX, nY ) = π∗(AnX(tY ) +AnY (tX) + TtX(tY ))

Proof. Let X,Y ∈ Γ(kerπ∗) and assume π is kerπ∗ − ϕ− invariant. Then, in a similar manner to eq. (7.1),

(∇π∗)(nX, nY ) = π∗(AnY (tX) +AnX(tY ) + TtX(tY )− TX(Y )).

We see if (∇π∗)(nX, nY ) = π∗(AnY (tX)+AnX(tY )+TtX(tY )) for allX,Y ∈ Γ(kerπ∗), then 0 = π∗(TX(Y )),
implying TX(Y ) = 0 since TX(Y ) is horizontal. Therefore, T = 0 on kerπ∗, implying kerπ∗ is totally geodesic
by corollary 5.3. The converse is clearly true. □

Lastly, we may present equivalent conditions for the integrability of Dθj . This condition is quite similar
to the one given in proposition 6.7 but, interestingly, the condition simplifies nicely in comparison to the
ϕ−pluriharmonic case.

Proposition 7.5. Let π be a pointwise bi-slant Riemannian submersion from a locally product Riemannian
manifold (M,ϕ, g) to a Riemannian manifold (N, ḡ) where kerπ∗ = Dθ1 ⊕Dθ2 . Let i, j ∈ {1, 2} where i ̸= j,
and assume π is ϕ−invariant. Then the following conditions are equivalent:

I) Dθi is integrable,

II) 0 = ḡ(π∗(nU), (∇π∗)(nX, Y )− (∇π∗)(Y, nX)) for each X,Y ∈ Γ(Dθi) and U ∈ Γ(Dθj )

Proof. Again by theorem 4.3, we know Dθi is integrable if and only if 0 = ḡ(π∗(nU), (∇π∗)(tX, Y ) +
(∇π∗)(nX, Y ) − (∇π∗)(tY,X) − (∇π∗)(nY,X)) for each X,Y ∈ Γ(Dθi) and U ∈ Γ(Dθj ). We may then
manipulate this metric relation in a similar manner to the proof of proposition 6.7:

ḡ(π∗(nU), (∇π∗)(tX, Y ) + (∇π∗)(nX, Y )− (∇π∗)(tY,X)− (∇π∗)(nY,X))

= ḡ(π∗(nU), ((∇π∗)(Y, ϕX)− (∇π∗)(Y, nX))− ((∇π∗)(ϕY,X)− (∇π∗)(nY,X))

+ (∇π∗)(nX, Y )− (∇π∗)(nY,X))

= ḡ(π∗(nU),−(∇π∗)(Y, nX) + (∇π∗)(nX, Y ))

The result then follows. □
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